The LED Code is finally finished! The code is set to display five different patterns across the LED strip depending on the amount of light hitting the sensor.
A Video of it in action:
In the first few frames of the video a finger is covering the sensor to give the darkest reading. As the lighter is lit and moved closer the arduino cycles through the five patterns. It runs a continuous loop, and prints to the serial monitor so that you may know excactly the light range you are recieving.
Here's the code, the patterns were taken from the FastLED library in the previous post.
#include "Adafruit_WS2801.h"
#include "SPI.h" // Comment out this line if using Trinket or Gemma
#ifdef __AVR_ATtiny85__
#include <avr/power.h>
#endif
/*****************************************************************************
Example sketch for driving Adafruit WS2801 pixels!
Designed specifically to work with the Adafruit RGB Pixels!
12mm Bullet shape ----> https://www.adafruit.com/products/322
12mm Flat shape ----> https://www.adafruit.com/products/738
36mm Square shape ----> https://www.adafruit.com/products/683
These pixels use SPI to transmit the color data, and have built in
high speed PWM drivers for 24 bit color per pixel
2 pins are required to interface
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, all text above must be included in any redistribution
*****************************************************************************/
// Choose which 2 pins you will use for output.
// Can be any valid output pins.
// The colors of the wires may be totally different so
// BE SURE TO CHECK YOUR PIXELS TO SEE WHICH WIRES TO USE!
uint8_t dataPin = 3; // Yellow wire on Adafruit Pixels
uint8_t clockPin = 13; // Green wire on Adafruit Pixels
// Don't forget to connect the ground wire to Arduino ground,
// and the +5V wire to a +5V supply
// Set the first variable to the NUMBER of pixels. 25 = 25 pixels in a row
Adafruit_WS2801 strip = Adafruit_WS2801(32, dataPin, clockPin);
// Optional: leave off pin numbers to use hardware SPI
// (pinout is then specific to each board and can't be changed)
//Adafruit_WS2801 strip = Adafruit_WS2801(25);
// For 36mm LED pixels: these pixels internally represent color in a
// different format. Either of the above constructors can accept an
// optional extra parameter: WS2801_RGB is 'conventional' RGB order
// WS2801_GRB is the GRB order required by the 36mm pixels. Other
// than this parameter, your code does not need to do anything different;
// the library will handle the format change. Examples:
//Adafruit_WS2801 strip = Adafruit_WS2801(25, dataPin, clockPin, WS2801_GRB);
//Adafruit_WS2801 strip = Adafruit_WS2801(25, WS2801_GRB);
int LDR = 0;
int LDRValue = 0;
void setup() {
Serial.begin(9600);
#if defined(__AVR_ATtiny85__) && (F_CPU == 16000000L)
clock_prescale_set(clock_div_1); // Enable 16 MHz on Trinket
#endif
strip.begin();
// Update LED contents, to start they are all 'off'
strip.show();
}
void loop() {
int LDRValue = analogRead(LDR);
int percentOfRange = map(LDRValue,0, 1023, 0, 100);
Serial.println(LDRValue);
delay(50);
// Some example procedures showing how to display to the pixels
if(percentOfRange >= 0 && percentOfRange < 20)
{
colorWipe(Color(2, 132, 130), 30);
}
if(percentOfRange >= 20 && percentOfRange < 40)
{
colorWipe(Color(56, 70, 122), 30);
}
if(percentOfRange >= 40 && percentOfRange < 60)
{
colorWipe(Color(255, 102, 0), 30);
}
if(percentOfRange >= 60 && percentOfRange < 80)
{
rainbow(3);
}
if(percentOfRange >= 80 && percentOfRange <= 100)
{
rainbowCycle(3);
}
}
void rainbow(uint8_t wait) {
int i, j;
for (j=0; j < 256; j++) { // 3 cycles of all 256 colors in the wheel
for (i=0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel( (i + j) % 255));
}
strip.show(); // write all the pixels out
delay(wait);
}
}
// Slightly different, this one makes the rainbow wheel equally distributed
// along the chain
void rainbowCycle(uint8_t wait) {
int i, j;
for (j=0; j < 256 * 5; j++) { // 5 cycles of all 25 colors in the wheel
for (i=0; i < strip.numPixels(); i++) {
// tricky math! we use each pixel as a fraction of the full 96-color wheel
// (thats the i / strip.numPixels() part)
// Then add in j which makes the colors go around per pixel
// the % 96 is to make the wheel cycle around
strip.setPixelColor(i, Wheel( ((i * 256 / strip.numPixels()) + j) % 256) );
}
strip.show(); // write all the pixels out
delay(wait);
}
}
// fill the dots one after the other with said color
// good for testing purposes
void colorWipe(uint32_t c, uint8_t wait) {
int i;
for (i=0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}
/* Helper functions */
// Create a 24 bit color value from R,G,B
uint32_t Color(byte r, byte g, byte b)
{
uint32_t c;
c = r;
c <<= 8;
c |= g;
c <<= 8;
c |= b;
return c;
}
//Input a value 0 to 255 to get a color value.
//The colours are a transition r - g -b - back to r
uint32_t Wheel(byte WheelPos)
{
if (WheelPos < 85) {
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if (WheelPos < 170) {
WheelPos -= 85;
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
}